From: James Preiss Date: Sun, 22 Jul 2018 20:22:19 +0000 (-0700) Subject: quat for ortho rot from vec to vec X-Git-Url: https://git.owens.tech///git?a=commitdiff_plain;h=769ad3f402ad9ea4e020b73937ebe7d75d58ae2a;p=forks%2Fcmath3d.git quat for ortho rot from vec to vec --- diff --git a/math3d.h b/math3d.h index af937a9..279ece1 100644 --- a/math3d.h +++ b/math3d.h @@ -470,6 +470,7 @@ static inline struct quat qeye(void) { return mkquat(0, 0, 0, 1); } // construct a quaternion from an axis and angle of rotation. +// does not assume axis is normalized. static inline struct quat qaxisangle(struct vec axis, float angle) { float scale = sinf(angle / 2) / vmag(axis); struct quat q; @@ -479,6 +480,30 @@ static inline struct quat qaxisangle(struct vec axis, float angle) { q.w = cosf(angle/2); return q; } +// construct a quaternion such that q * a = b, +// and the rotation axis is orthogonal to the plane defined by a and b, +// and the rotation is less than 180 degrees. +// assumes a and b are unit vectors. +// does not handle degenerate case where a = -b. returns all-zero quat +static inline struct quat qvectovec(struct vec a, struct vec b) { + struct vec const cross = vcross(a, b); + float const sinangle = vmag(cross); + float const cosangle = vdot(a, b); + // avoid taking sqrt of negative number due to floating point error. + // TODO: find tighter exact bound + float const EPS_ANGLE = 1e-6; + if (sinangle < EPS_ANGLE) { + if (cosangle > 0.0f) return qeye(); + else return mkquat(0.0f, 0.0f, 0.0f, 0.0f); // degenerate + } + float const halfcos = 0.5f * cosangle; + // since angle is < 180deg, the positive sqrt is always correct + float const sinhalfangle = sqrtf(0.5f - halfcos); + float const coshalfangle = sqrtf(0.5f + halfcos); + struct vec const qimag = vscl(sinhalfangle / sinangle, cross); + float const qreal = coshalfangle; + return quatvw(qimag, qreal); +} // construct from (roll, pitch, yaw) Euler angles using Tait-Bryan convention // (yaw, then pitch about new pitch axis, then roll about new roll axis) static inline struct quat rpy2quat(struct vec rpy) { @@ -602,6 +627,9 @@ static inline float qdot(struct quat a, struct quat b) { static inline float qanglebetween(struct quat a, struct quat b) { return acosf(qdot(a, b)); } +static inline bool qeq(struct quat a, struct quat b) { + return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w; +} // normalize a quaternion. // typically used to mitigate precision errors. static inline struct quat qnormalize(struct quat q) { diff --git a/test.c b/test.c index be4a841..5da8e04 100644 --- a/test.c +++ b/test.c @@ -17,6 +17,11 @@ float randu(float a, float b) { return (float)x; } +// returns a random vector uniformly sampled from the unit cube +struct vec randcube() { + return mkvec(randu(-1.0f, 1.0f), randu(-1.0f, 1.0f), randu(-1.0f, 1.0f)); +} + void printvec(struct vec v) { printf("%f, %f, %f", (double)v.x, (double)v.y, (double)v.z); } @@ -47,12 +52,39 @@ void test_quat_rpy_conversions() struct vec rpy1 = quat2rpy(rpy2quat(rpy0)); ASSERT_VEQ_EPSILON(rpy0, rpy1, 0.00001f); // must be fairly loose due to 32 bit trig, etc. } + printf("%s passed\n", __func__); +} + +void test_qvectovec() +{ + srand(0); // deterministic + int const N = 10000; + struct quat const qzero = mkquat(0.0f, 0.0f, 0.0f, 0.0f); + + for (int i = 0; i < N; ++i) { + struct vec a = randcube(), b = randcube(); + // do not try to normalize tiny vectors. + if (vmag2(a) < 1e-8 || vmag2(b) < 1e-8) continue; + a = vnormalize(a); + b = vnormalize(b); + // degenerate case - test explicitly, not accidentally. + if (vdot(a, b) < -0.99f) continue; + // should return zero vector for degenerate case. + assert(qeq(qvectovec(a, vneg(a)), qzero)); + + // non-degenerate case. + struct quat const q = qvectovec(a, b); + struct vec const qa = qvrot(q, a); + ASSERT_VEQ_EPSILON(qa, b, 0.00001f); + } + printf("%s passed\n", __func__); } // micro test framework typedef void (*voidvoid_fn)(void); voidvoid_fn test_fns[] = { test_quat_rpy_conversions, + test_qvectovec, }; static int i_test = -1;