From: James Preiss Date: Thu, 7 May 2020 00:29:09 +0000 (-0700) Subject: improved stopping criterion for polytope projection X-Git-Url: https://git.owens.tech/about.html/about.html/git?a=commitdiff_plain;h=23c574d9076b751d3d1e42e3f01652347e054dc8;p=forks%2Fcmath3d.git improved stopping criterion for polytope projection --- diff --git a/math3d.h b/math3d.h index a240bcc..796e802 100644 --- a/math3d.h +++ b/math3d.h @@ -835,17 +835,17 @@ static inline bool vinpolytope(struct vec v, float const A[], float const b[], i } // Projects v onto the convex polytope defined by linear inequalities Ax <= b. -// Returns argmin_{x: Ax <= b} |x - v|_2. Uses Diykstra's (not Dijkstra's!) -// projection algorithm [1]. +// Returns argmin_{x: Ax <= b} |x - v|_2. Uses Dykstra's (not Dijkstra's!) +// projection algorithm [1] with robust stopping criteria [2]. // // Args: // v: vector to project into the polytope. // A: n x 3 matrix, row-major. Each row must have L2 norm of 1. // b: n vector. // work: n x 3 matrix. will be overwritten. input values are not used. -// tolerance: Halt once iterates satisfy |x_{k + 1} - x_k|_2 < tolerance. -// Roughly, but not actually, equivalent to allowing constraint violations -// up to Ax >= b + tolerance. +// tolerance: Stop when *approximately* violates the polytope constraints +// by no more than this value. Not exact - be conservative if needed. +// maxiters: Terminate after this many iterations regardless of convergence. // // Returns: // The projection of v into the polytope. @@ -854,8 +854,11 @@ static inline bool vinpolytope(struct vec v, float const A[], float const b[], i // [1] Boyle, J. P., and Dykstra, R. L. (1986). A Method for Finding // Projections onto the Intersection of Convex Sets in Hilbert Spaces. // Lecture Notes in Statistics, 28–47. doi:10.1007/978-1-4613-9940-7_3 +// [2] Birgin, E. G., and Raydan, M. (2005). Robust Stopping Criteria for +// Dykstra's Algorithm. SIAM J. Scientific Computing 26(4): 1405-1414. +// doi:10.1137/03060062X // -static inline struct vec vprojectpolytope(struct vec v, float const A[], float const b[], float work[], int n, float tolerance) +static inline struct vec vprojectpolytope(struct vec v, float const A[], float const b[], float work[], int n, float tolerance, int maxiters) { // early bailout. if (vinpolytope(v, A, b, n, tolerance)) { @@ -875,23 +878,31 @@ static inline struct vec vprojectpolytope(struct vec v, float const A[], float c z[i] = 0.0f; } - float const tolerance2 = fsqr(tolerance); + // For user-friendliness, we accept a tolerance value in terms of + // the Euclidean magnitude of the polytope violation. However, the + // stopping criteria we wish to use is the robust one of [2] - + // specifically, the expression called c_I^k - which is based on the + // sum of squared projection residuals. This is a feeble attempt to get + // a ballpark tolerance value that is roughly equivalent. + float const tolerance2 = n * fsqr(tolerance) / 10.0f; struct vec x = v; - while (true) { - struct vec x_last_iter = x; + for (int iter = 0; iter < maxiters; ++iter) { + float c = 0.0f; for (int i = 0; i < n; ++i) { struct vec x_old = x; struct vec ai = vloadf(A + 3 * i); - struct vec zi = vloadf(z + 3 * i); - x = vprojecthalfspace(vadd(x_old, zi), ai, b[i]); - struct vec zi_new = vadd3(x_old, zi, vneg(x)); - vstoref(zi_new, z + 3 * i); + struct vec zi_old = vloadf(z + 3 * i); + x = vprojecthalfspace(vsub(x_old, zi_old), ai, b[i]); + struct vec zi = vadd3(x, vneg(x_old), zi_old); + vstoref(zi, z + 3 * i); + c += vdist2(zi_old, zi); } - if (vdist2(x_last_iter, x) < tolerance2) { + if (c < tolerance2) { return x; } } + return x; } diff --git a/test.c b/test.c index 2ea12d8..bfa1bc1 100644 --- a/test.c +++ b/test.c @@ -28,6 +28,13 @@ struct vec randcube() { return mkvec(randu(-1.0f, 1.0f), randu(-1.0f, 1.0f), randu(-1.0f, 1.0f)); } +// returns a random vector sampled from a Gaussian with expected L2 norm of 1. +// Note that this is *not* an identity covariance matrix. +struct vec randnvec() { + struct vec v = mkvec(randn(), randn(), randn()); + return vscl(1.0 / sqrtf(3.0), v); +} + // returns a random vector approximately uniformly sampled from the unit sphere struct vec randsphere() { struct vec v = mkvec(randn(), randn(), randn()); @@ -54,6 +61,34 @@ do { \ } \ } while(0) \ +// Generates n linear inequalities Ax <= b representing a convex polytope. +// +// The rows of A will be normalized to have L2 norm of 1. +// The polytope interior will be non-empty. +// The polytope may or may not contain the origin. +// The polytope may or may not be bounded, but will be with high probability +// as n increases. +// The returned interior point will be, on average, around 1 unit away +// from any polytope face. +// +// Returns a point in the polytope interior. +struct vec randpolytope(float A[], float b[], int n) { + // If we generate random Ax <= b with b always positive, we ensure that + // x = 0 is always a solution; hence the polytope is non-empty. However, + // we also want to test nonempty polytopes that don't contain x = 0. + // Therefore, we use A(x - shift) <= b with b positive, which is + // equivalent to Ax <= b + Ashift. + struct vec shift = vscl(randu(0.0f, 4.0f), randsphere()); + + for (int i = 0; i < n; ++i) { + struct vec a = randsphere(); + vstoref(a, A + 3 * i); + b[i] = randu(0.01f, 2.0f) + vdot(a, shift); + } + + return shift; +} + // // tests - when adding new tests, make sure to add to test_fns array @@ -154,7 +189,7 @@ void test_qvectovec() printf("%s passed\n", __func__); } -void test_polytope() +void test_polytope_projection() { srand(1); // deterministic @@ -162,7 +197,9 @@ void test_polytope() // and check that the projections are closer than other points. int const N_POLYTOPES = 100; int const N_PROJECTIONS = 10; - int const N_OTHERS = 1000; + int const N_OTHERS = 100; + float const TOLERANCE = 1e-6; + float const MAXITERS = 500; int const MAX_FACES = 30; float *A = malloc(sizeof(float) * MAX_FACES * 3); @@ -175,35 +212,26 @@ void test_polytope() // Random number of polytope faces. int n = rand() % MAX_FACES + 1; - // If we generate random Ax <= b with b always positive, we ensure that - // x = 0 is always a solution; hence the polytope is non-empty. However, - // we also want to test nonempty polytopes that don't contain x = 0. - // Therefore, we use A(x + shift) <= b with b positive, which is - // equivalent to Ax <= b - Ashift. - struct vec shift = randsphere(); - - for (int i = 0; i < n; ++i) { - struct vec a = randsphere(); - vstoref(a, A + 3 * i); - b[i] = randu(0.01, 10) - vdot(a, shift); - } + struct vec interior = randpolytope(A, b, n); + assert(vinpolytope(interior, A, b, n, 1e-10)); for (int point = 0; point < N_PROJECTIONS; ++point) { + struct vec x = randsphere(); - struct vec xp = vprojectpolytope(x, A, b, work, n, 1e-6); + struct vec xp = vprojectpolytope(x, A, b, work, n, TOLERANCE, MAXITERS); // Feasibility check: projection is inside polytope. // The tolerance is looser than the vprojectpolytope tolerance // because that tolerance doesn't actually guarantee a rigid bound // on constraint violations. - assert(vinpolytope(xp, A, b, n, 1e-5)); + assert(vinpolytope(xp, A, b, n, 10 * TOLERANCE)); // Optimality check: projection is closer than other random points // to query point. Very large N_OTHERS would be more thorough... for (int other = 0; other < N_OTHERS; ++other) { - struct vec other = vadd(randsphere(), shift); + struct vec other = vadd(randnvec(), interior); if (vinpolytope(other, A, b, n, 0.0f)) { - assert (vdist2(xp, x) <= vdist2(other, x)); + assert(vdist2(xp, x) <= vdist2(other, x)); } } } @@ -216,6 +244,7 @@ void test_polytope() printf("%s passed\n", __func__); } + // micro test framework typedef void (*voidvoid_fn)(void); voidvoid_fn test_fns[] = { @@ -224,7 +253,7 @@ voidvoid_fn test_fns[] = { test_quat_rpy_conversions, test_quat_mat_conversions, test_qvectovec, - test_polytope, + test_polytope_projection, }; static int i_test = -1;