From: James Preiss Date: Sun, 24 Jul 2016 22:57:31 +0000 (-0700) Subject: some easy stuff that was missing X-Git-Url: https://git.owens.tech/about.html/about.html/git?a=commitdiff_plain;h=b3e6879d8c6b3bee4c040d88613c014a2e5780e6;p=forks%2Fcmath3d.git some easy stuff that was missing --- diff --git a/math3d.h b/math3d.h index 63faeb2..e61332d 100644 --- a/math3d.h +++ b/math3d.h @@ -114,14 +114,26 @@ static inline struct vec vnormalize(struct vec v) { static inline struct vec vcross(struct vec a, struct vec b) { return mkvec(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); } -// projection of a onto b, where b is a unit vector +// projection of a onto b, where b is a unit vector. static inline struct vec vprojectunit(struct vec a, struct vec b_unit) { return vscl(vdot(a, b_unit), b_unit); } -// component of a orthogonal to b, where b is a unit vector +// component of a orthogonal to b, where b is a unit vector. static inline struct vec vorthunit(struct vec a, struct vec b_unit) { return vsub(a, vprojectunit(a, b_unit)); } +// element-wise absolute value of vector. +static inline struct vec vabs(struct vec v) { + return mkvec(fabs(v.x), fabs(v.y), fabs(v.z)); +} +// element-wise minimum of vector. +static inline struct vec vmin(struct vec a, struct vec b) { + return mkvec(fminf(a.x, b.x), fminf(a.y, b.y), fminf(a.z, b.z)); +} +// element-wise maximum of vector. +static inline struct vec vmax(struct vec a, struct vec b) { + return mkvec(fmaxf(a.x, b.x), fmaxf(a.y, b.y), fmaxf(a.z, b.z)); +} // // comparisons @@ -135,6 +147,26 @@ static inline bool veq(struct vec a, struct vec b) { static inline bool vneq(struct vec a, struct vec b) { return !veq(a, b); } +// element-wise less-than +static inline bool vless(struct vec a, struct vec b) { + return (a.x < b.x) && (a.y < b.y) && (a.z < b.z); +} +// element-wise less-than-or-equal +static inline bool vleq(struct vec a, struct vec b) { + return (a.x <= b.x) && (a.y <= b.y) && (a.z <= b.z); +} +// element-wise greater-than +static inline bool vgreater(struct vec a, struct vec b) { + return (a.x > b.x) && (a.y > b.y) && (a.z > b.z); +} +// element-wise greater-than-or-equal +static inline bool vgeq(struct vec a, struct vec b) { + return (a.x >= b.x) && (a.y >= b.y) && (a.z >= b.z); +} +// test if any element of a vector is NaN. +static inline bool visnan(struct vec v) { + return isnan(v.x) || isnan(v.y) || isnan(v.z); +} // // special functions to ease the pain of writing vector math in C. @@ -169,7 +201,7 @@ static inline struct vec vloadf(float const *f) { static inline void vstoref(struct vec v, float *f) { f[0] = v.x; f[1] = v.y; f[2] = v.z; } -// Vector TODO: abs, min, max, fuzzy comparison +// Vector TODO: fuzzy comparison // ---------------------------- 3x3 matrices ------------------------------ @@ -309,6 +341,13 @@ static inline struct mat33 msub(struct mat33 a, struct mat33 b) { } return c; } +// multiply a matrix by a vector. +static inline struct vec mvmult(struct mat33 a, struct vec v) { + float x = a.m[0][0] * v.x + a.m[0][1] * v.y + a.m[0][2] * v.z; + float y = a.m[1][0] * v.x + a.m[1][1] * v.y + a.m[1][2] * v.z; + float z = a.m[2][0] * v.x + a.m[2][1] * v.y + a.m[2][2] * v.z; + return mkvec(x, y, z); +} // multiply two matrices. static inline struct mat33 mmult(struct mat33 a, struct mat33 b) { struct mat33 ab; @@ -330,6 +369,17 @@ static inline struct mat33 maddridge(struct mat33 a, float d) { a.m[2][2] += d; return a; } +// test if any element of a matrix is NaN. +static inline bool misnan(struct mat33 m) { + for (int i = 0; i < 3; ++i) { + for (int j = 0; j < 3; ++j) { + if (isnan(m.m[i][j])) { + return true; + } + } + } + return false; +} // set a 3x3 block within a big row-major matrix. // block: pointer to the upper-left element of the block in the big matrix. // stride: the number of columns in the big matrix. @@ -342,23 +392,17 @@ static inline void set_block33_rowmaj(float *block, int stride, struct mat33 m) } } -// Matrix TODO: mmultv, inv, solve, eig, raw floats +// Matrix TODO: inv, solve, eig, raw floats, axis-aligned rotations // ---------------------------- quaternions ------------------------------ struct quat { - union { - struct vec v; - struct { - float x; - float y; - float z; - }; - }; + float x; + float y; + float z; float w; }; -// TODO: remove anonymous union + struct for strict c99 compatibility // // constructors @@ -367,15 +411,14 @@ struct quat { // construct a quaternion from its x, y, z, w elements. static inline struct quat mkquat(float x, float y, float z, float w) { struct quat q; - q.v = mkvec(x, y, z); - q.w = w; + q.x = x; q.y = y; q.z = z; q.w = w; return q; } // construct a quaternion from a vector containing (x, y, z) and a scalar w. // note that this is NOT an axis-angle constructor. static inline struct quat quatvw(struct vec v, float w) { struct quat q; - q.v = v; + q.x = v.x; q.y = v.y; q.z = v.z; q.w = w; return q; } @@ -387,7 +430,9 @@ static inline struct quat qeye() { static inline struct quat qaxisangle(struct vec axis, float angle) { float scale = sin(angle / 2) / vmag(axis); struct quat q; - q.v = vscl(scale, axis); + q.x = scale * axis.x; + q.y = scale * axis.y; + q.z = scale * axis.z; q.w = cos(angle/2); return q; } @@ -423,7 +468,7 @@ static inline struct vec quat2rpy(struct quat q) { static inline struct vec quat2axis(struct quat q) { // TODO this is not numerically stable for tiny rotations float s = 1.0f / sqrtf(1 - q.w * q.w); - return vscl(s, q.v); + return vscl(s, mkvec(q.x, q.y, q.z)); } // compute the angle of a quaternion's axis-angle decomposition. static inline float quat2angle(struct quat q) { @@ -456,14 +501,15 @@ static inline struct mat33 quat2rotmat(struct quat q) { // rotate a vector by a quaternion. static inline struct vec qvrot(struct quat q, struct vec v) { // from http://gamedev.stackexchange.com/a/50545 - TODO find real citation + struct vec qv = mkvec(q.x, q.y, q.z); return vadd3( - vscl(2.0f * vdot(q.v, v), q.v), - vscl(q.w * q.w - vdot(q.v, q.v), v), - vscl(2.0f * q.w, vcross(q.v, v)) + vscl(2.0f * vdot(qv, v), qv), + vscl(q.w * q.w - vmag2(qv), v), + vscl(2.0f * q.w, vcross(qv, v)) ); } -// multiply (compose) two quaternions -// such that qvrot(qqmul(q, p), v) == qvrot(q, qvrot(p, v)) +// multiply (compose) two quaternions +// such that qvrot(qqmul(q, p), v) == qvrot(q, qvrot(p, v)). static inline struct quat qqmul(struct quat q, struct quat p) { float x = q.w*p.x + q.z*p.y - q.y*p.z + q.x*p.w; float y = -q.z*p.x + q.w*p.y + q.x*p.z + q.y*p.w; @@ -471,15 +517,24 @@ static inline struct quat qqmul(struct quat q, struct quat p) { float w = -q.x*p.x - q.y*p.y - q.z*p.z + q.w*p.w; return mkquat(x, y, z, w); } -// invert a quaternion +// invert a quaternion. static inline struct quat qinv(struct quat q) { - return quatvw(vneg(q.v), q.w); + return mkquat(-q.x, -q.y, -q.z, q.w); +} +// negate a quaternion. +// this represents the same rotation, but is still sometimes useful. +static inline struct quat qneg(struct quat q) { + return mkquat(-q.x, -q.y, -q.z, -q.w); +} +// quaternion dot product. is cosine of angle between them. +static inline float qdot(struct quat a, struct quat b) { + return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } // normalize a quaternion. // typically used to mitigate precision errors. static inline struct quat qnormalize(struct quat q) { - float maginv = 1.0f / sqrtf(vmag2(q.v) + fsqr(q.w)); - return quatvw(vscl(maginv, q.v), maginv * q.w); + float s = 1.0f / sqrtf(qdot(q, q)); + return mkquat(s*q.x, s*q.y, s*q.z, s*q.w); } // update an attitude estimate quaternion with a reading from a gyroscope // over the timespan dt. Gyroscope is assumed (roll, pitch, yaw) @@ -491,12 +546,39 @@ static inline struct quat quat_gyro_update(struct quat quat, struct vec gyro, fl double const p = (dt / 2) * gyro.y; double const y = (dt / 2) * gyro.z; - q1.v.x = quat.x + y*quat.y - p*quat.z + r*quat.w; - q1.v.y = -y*quat.x + quat.y + r*quat.z + p*quat.w; - q1.v.z = p*quat.x - r*quat.y + quat.z + y*quat.w; - q1.w = -r*quat.x - p*quat.y - y*quat.z + quat.w; + q1.x = quat.x + y*quat.y - p*quat.z + r*quat.w; + q1.y = -y*quat.x + quat.y + r*quat.z + p*quat.w; + q1.z = p*quat.x - r*quat.y + quat.z + y*quat.w; + q1.w = -r*quat.x - p*quat.y - y*quat.z + quat.w; return q1; } +// normalized linear interpolation. s should be between 0 and 1. +static inline struct quat qnlerp(struct quat a, struct quat b, float t) { + float s = 1.0f - t; + return qnormalize(mkquat( + s*a.x + t*b.x, s*a.y + t*b.y, s*a.z + t*b.z, s*a.w + t*b.w)); +} +// spherical linear interpolation. s should be between 0 and 1. +static inline struct quat qslerp(struct quat a, struct quat b, float t) +{ + float dp = qdot(a, b); + if (dp < 0) { + dp = -dp; + b = qneg(b); + } + + if (dp > 0.99f) { + // fall back to linear interpolation to avoid div-by-zero + return qnlerp(a, b, t); + } + else { + float theta = acos(dp); + float s = sin(theta * (1 - t)) / sin(theta); + t = sin(theta * t) / sin(theta); + return mkquat( + s*a.x + t*b.x, s*a.y + t*b.y, s*a.z + t*b.z, s*a.w + t*b.w); + } +} // // conversion to/from raw float and double arrays. @@ -519,4 +601,6 @@ static inline void qstoref(struct quat q, float *f) { f[0] = q.x; f[1] = q.y; f[2] = q.z; f[3] = q.w; } -// Quaternion TODO: rpy2quat, slerp +// Quaternion TODO: rpy2quat + +// Overall TODO: lines? segments? planes? axis-aligned boxes? spheres?